
Functional Test-Cost Reduction Based on Fault Tree Analysis
and Binary Optimization

Xiaojie Zuo1,2, Kangcheng Wang1,2,3, Yun-Bo Zhao1,2,3,4, Yu Kang1,2,3,4, Peng Bai3,5

1. AHU-IAI AI Joint Laboratory, Anhui University, Hefei, China
E-mail: wa22301175@stu.ahu.edu.cn, kcwang@iai.ustc.edu.cn, ybzhao@ustc.edu.cn, kangduyu@ustc.edu.cn

2. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China

3. Department of Automation, University of Science and Technology of China, Hefei, China

4. Institute of Advanced Technology, University of Science and Technology of China, Hefei, China

5. LCFC, Hefei, China
E-mail: baipeng@lenovo.com

Abstract: With the rapid increase in the complexity of electronics, the cost of the functional testing process used to ensure
product functionality continues to rise. Optimization modeling based on reliability analysis is an effective approach to reduce
testing costs. However, the reliability calculations of existing methods often exhibit significant deviations, making it challenging
to guarantee the effectiveness of the resulting testing strategies in practical applications. To address this issue, this article proposes
an optimization modeling method that integrates statistical analysis and reliability analysis. The expression for the reliability of
the system’s key stage is formulated by analyzing the system’s reliability. Statistical analysis is utilized to exploit the inherent
reliability information in the enormous process data to determine the probability of the root causes of system failures. The
reliability of the key stage is quantitatively calculated based on the structure of the fault tree tailored for the system. On this
basis, a binary optimization model is established to obtain a testing strategy with strong generalization ability and reduce the cost
of functional testing. The effectiveness of the proposed method is verified through a simulation case study.

Key Words: Intelligent Manufacturing, Optimization Modeling, Fault Tree Analysis, Functional Testing, Cost Reduction

1 Introduction

Functional testing is a crucial process in electronics man-

ufacturing for assessing product quality. With the rapid in-

crease in the complexity of electronics, the cost of functional

testing is rising, and its impact on the overall manufactur-

ing cost cannot be ignored [1]. To reduce testing costs, pro-

duction often divides the functional testing process into two

stages: board-level functional testing and system-level func-

tional testing. Board-level functional testing reduces rework

costs by pre-testing some of the main functions of the moth-

erboard. It usually determines the items to be tested or the

percentage of the motherboard to be tested based on a spe-

cific strategy. On the other hand, system-level functional

testing comprehensively tests all the functions of the finished

product to maximize the shipping yield rate [2]. The key to

reducing testing costs lies in designing the testing strategy

for the board-level functional testing stage [3].

Existing methods for designing board-level functional

testing strategies are broadly categorized into two types [4]:

test ordering and test selection. The former adjusts the test-

ing order of the testing items, thereby reducing the testing

cost by terminating the testing process of faulty mother-

boards in advance [5]; the latter selects specific testing items

from each motherboard for testing, thus reducing the overall

testing cost for all motherboards. The latter often outper-

forms the former in testing high-yield products [6]. As prod-

uct yield rates continue to improve, test selection is widely

used for functional testing of various circuits [7–9].

However, existing test selection methods optimize testing

strategies based solely on the conventional attributes of the

This work was supported by the Key Research and Development

Program of Anhui (No. 202104a05020064). (Corresponding authors:

Kangcheng Wang, Yu Kang)

testing items, often ignoring the reliability information of the

testing object. Since the board fabrication process often has

frequent variations in working conditions, neglecting relia-

bility information can easily lead to a significant deviation

between the established optimization model and the actual

process. The optimized testing strategy is prone to over-

fitting in practical applications, making it difficult to effec-

tively reduce the testing cost [10].

Enhancing pure optimization modeling by incorporat-

ing reliability analysis is an effective approach to address

the aforementioned issue. Existing optimization modeling

methods based on reliability analysis typically utilize system

reliability to establish the objective function or constraints of

the optimization problem [11–13]. However, the reliability

analysis methods in the existing studies have the following

issues: Firstly, the current methods often lack the utilization

of an effective reliability analysis model tailored to the re-

search object, leading to challenges in ensuring the validity

of qualitative reliability analysis and the accuracy of quanti-

tative reliability calculations. Secondly, the reliability of the

existing methods is often determined by a limited amount of

data collected over a short timeframe, making it difficult to

accurately reflect the reliability of the system and its compo-

nents. These two issues result in a significant deviation be-

tween the calculated reliability and the actual value in prac-

tical applications of existing methods. This, in turn, impacts

the effectiveness of optimization models based on reliability

analysis.

To address the aforementioned issue, this article proposes

an optimization modeling method that integrates statistical

analysis and reliability analysis. By analyzing the reliabil-

ity of the research object, the expression for the reliability of

the key stage in the research object is formulated. Statistical

Proceedings of the 43rd Chinese Control Conference
July 28-31, 2024, Kunming, China

6905
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 08,2024 at 10:51:50 UTC from IEEE Xplore. Restrictions apply.

analysis is used to exploit the inherent reliability information

in massive process data, enabling the determination of the

probability of the root causes of the object’s failures based

on the reliability information. On this basis, the reliability of

the key stage is calculated according to the structure of the

fault tree tailored for the research object. An optimization

model is established based on the calculated reliability, and

a board-level functional testing strategy with strong gener-

alization ability to reduce testing costs is derived by solving

the developed optimization model.

The main contents of the rest of this article are as fol-

lows: Section 2 provides a brief description of the functional

testing process; Section 3 proposes an optimization model-

ing method that integrates statistical analysis and reliability

analysis and introduces method evaluation indexes; Section

4 carries out simulation experiments to verify the effective-

ness of the method; Section 5 provides a summary of the full

article.

2 Background

To ensure that electronics, especially their motherboards,

function properly, board-level and system-level functional

testing stages are performed sequentially after the board fab-

rication process. Both stages assess several functional items

serially.

The board-level functional testing stage usually deter-

mines the test status or test order of the functional items by

developing a testing strategy. If all testing items of a mother-

board pass the test, the motherboard is regarded as a qualified

product. However, if one item fails the test, the motherboard

is regarded as faulty and sent to a repair center. The repair

center will conduct more detailed tests on the faulty mother-

board, determine the underlying causes of the failure based

on the testing outcomes and practical experience, repair the

relevant components, and record it in the repair log.

Motherboards that pass the board-level functional testing

will be assembled into a finished product. All components

of the finished product will then be tested in the system-level

functional testing stage. If all items of the product pass the

test, the product will be considered qualified. If not, the

product is sent to the repair center for disassembly, addi-

tional testing, and repair.

If a motherboard has untested faulty components, it is

considered a false negative motherboard, meaning it is in-

correctly classified as a functional one. The motherboard

will then be assembled into a finished product. During the

system-level functional testing stage, the finished product

will be detected as faulty and sent for repair.

The testing outcomes are binary data, where ‘0’ indicates

that the motherboard or finished product failed the test on

that item, and ‘1’ indicates that it passed the test. Let n and

m denote the number of motherboards and the number of

tested items, respectively, the testing outcomes of the board-

level functional testing stage can be represented as a data

set D ∈ {0, 1}n×m. If there are untested functional items

in the board-level functional testing stage, the values of the

corresponding elements of D are not immediately available.

However, since all functional testing items will be tested in

the system-level functional testing stage to ensure product

quality, the testing outcomes from the system-level func-

tional testing stage can be used to determine the values of

all elements in the data set D.

The cost of functional testing mainly consists of the time

cost of testing functional items and the cost of repairing

faulty motherboards and final products. Except for the

time cost of the system-level functional testing stage, the

time cost, as well as the rework cost of the false negative

motherboards and final products, are all determined by the

board-level testing strategy. Therefore, designing an effi-

cient board-level functional testing strategy is the key to re-

ducing the overall cost of functional testing. In this article,

we focus solely on the mainstream testing strategy design

method: test selection. A test selection strategy represents

the testing status of functional testing items, and it is typi-

cally denoted by a logic vector S ∈ {0, 1}m.

3 Method

3.1 Reliability Analysis Integrating Statistical Analysis
The cost of reworking false negative motherboards ac-

counts for a relatively high percentage of the overall cost

of testing. The cost is essentially determined by the relia-

bility of the board-level functional testing stage with respect

to the system-level functional testing stage. Therefore, this

paper starts with analyzing the reliability and designing an

effective method to reduce the overall cost of testing.

When the test selection strategy is used, the board-level

functional testing items can be categorized into two types

according to the strategy: testing items and untested items.

Since the testing items are tested in series, the testing items

form a serial subsystem, while the untested items form an-

other. Assuming that testing the faulty components of a

faulty motherboard will certainly identify it as faulty, then

the presence of a false negative motherboard is caused by

the untested items. Therefore, for the system-level func-

tional testing, the reliability of the subsystem consisting of

testing items from the board-level functional testing stage

is 100%, while the unreliability arises solely from the sub-

system comprising untested items. Therefore, the reliability

of the board-level functional testing stage with respect to the

system-level functional testing stage can be calculated as fol-

lows:

R(S) =
m∏
j=1

Rj |(Sj = 0) (1)

where Rj denotes the reliability of the motherboard compo-

nent corresponding to the jth testing item.

To determine the reliability of a motherboard component,

it is necessary to analyze the inherent causes of its failure.

Fault tree analysis is an effective tool for analyzing the pos-

sible causes of failures of a system and its components and

their probability of occurrence. In our previous work [14],

we used this tool to build a fault tree tailored to the board-

level functional testing stage of a laptop motherboard. In this

fault tree, the top event is the motherboard failure, the first-

level intermediate events are the failures of the motherboard

components, the basic events are the underlying causes of

the motherboard component failures, and the basic events

are independent of each other. For the sake of brevity, the

relevant diagrams and tables will not be repeated here; inter-

ested readers should refer to Ref [14].

In this article, we still take this laptop computer as an ex-

ample to study the functional testing process and analyze the

6906
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 08,2024 at 10:51:50 UTC from IEEE Xplore. Restrictions apply.

reliability of its motherboard using the established fault tree.

The reliability R(S) of the top event in Eq. (1) is calculated

by integrating statistical analysis and utilizing the structure

of the fault tree as follows:

First, a large number of historical testing outcomes of this

motherboard are constructed as a dataset Dh ∈ {0, 1}nh×m,

where nh denotes the number of motherboards that have un-

dergone the board-level functional testing stage. Then, a re-

pair log corresponding to Dh for the motherboard and its

finished product is obtained from the repair center. This

log includes diagnostic and repair information for the root

causes of the faulty motherboard in both the board-level

and system-level functional testing stages. Next, another

dataset is constructed using the repair logs and denoted as

Dr ∈ {0, 1}nr×q , where q denotes the number of basic

events. In this dataset, Dr
s,k = 1 denotes that the sth moth-

erboard is repaired due to the occurrence of the kth basic

event. Dr is a sparse matrix, and typically each row of Dr

has only one element equal to 1. Dr contains inherent relia-

bility information about the testing process. Data analytic of

Dr is conducted as follows using statistical analysis. Use the

following formula to calculate the number of occurrences of

the kth basic event:

nr
k =

nr∑
s=1

(Dr
s,k = 1), k = 1, · · · , q (2)

Based on the definition of reliability, the probability of the

kth bottom event is computed and used as an estimate of the

reliability of that event as follows:

R(Xk) =
nh − nr

k

nh
, k = 1, · · · , q (3)

Next, based on the fault tree structure, the reliability of

the components corresponding to the first-level intermediate

events is calculated as follows:

R(Mj) =
∏

Xk∈Bj

R(Xk), j = 1, · · · ,m (4)

Since all first-level intermediate events correspond to

board-level functional testing items, the reliability of each

testing item can be obtained as follows:

Rj = R(Mj), j = 1, · · · ,m (5)

Finally, the reliability of the top event is calculated using

Eq. (1) and Eqs. (3–5).

3.2 Reliability Analysis-Based Optimization Modeling
Reliability is an essential reflection of the quality of the

testing object. The reliability of the board-level functional

testing stage with respect to the system-level functional test-

ing stage depends on the reliability of the testing object and

the test strategy, which remains constant regardless of the

working conditions. Therefore, the test strategy derived from

reliability analysis should possess strong generalization abil-

ity.

Decreasing the reliability of the board-level functional

testing stage with respect to the system-level functional test-

ing stage may lead to an increase in false negative mother-

boards and a decrease in testing time. Considering that the

increased rework cost due to an increase in the number of

false negative motherboards tends to be higher than the cost

savings from a decrease in testing time, maximizing the reli-

ability of the board-level functional testing stage with respect

to the system-level functional testing stage is a potentially ef-

fective strategy for reducing the overall cost of testing. Thus,

the objective of the optimization problem in this section is

expressed in the following form:

max
S

R(S) (6)

The testing time constraint is imposed on the optimiza-

tion problem to avoid the accumulation of motherboards. To

mitigate overfitting, the average testing time for each test-

ing item is obtained from the historical testing time T h ∈
R

nh×m by the following equation:

t̄hj =
1

nh

nh∑
i=1

Th
i,j , j = 1, · · · ,m (7)

where Th
i,j denotes the time cost of testing the jth item on

the ith historical motherboard.

Let t0 be the testing time threshold for each motherboard,

which is determined by the motherboard fabrication sched-

ule. The time constraint for the test can be expressed as:

m∑
j=1

t̄hj |(Sj = 1) ≤ t0 (8)

Based on Eq. (6) and Eq. (8), a binary optimization prob-

lem is formulated as follows:

max
S

R(S) (9)

s.t.

m∑
j=1

t̄hj |(Sj = 1) ≤ t0 (10)

S ∈ {0, 1}m (11)

The optimal testing strategy can be obtained by solving

the optimization problem (9–11).

3.3 Evaluation Criteria
This subsection introduces three criteria for evaluating the

performance of the selected testing strategy, namely false

negative rate (FNR), average testing time cost, and average

cost of testing.

FNR denotes the ratio of faulty motherboards not detected

by the testing strategy S to the total number of actual faulty

motherboards. Based on Section 2, The detailed steps for

calculating FNR are as follows:

The actual number of qualified motherboards can be ob-

tained by logically analyzing the testing outcomes as fol-

lows:

nN =
n∑

i=1

⎡
⎣
⎛
⎝

m∧
j=1

(Di,j = 1)

⎞
⎠ ≡ �

⎤
⎦ (12)

where � denotes the logical truth.

The actual number of faulty motherboards can be obtained

by subtracting the number of qualified motherboards from

the total number of motherboards as follows:

nP = n− nN (13)

6907
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 08,2024 at 10:51:50 UTC from IEEE Xplore. Restrictions apply.

By analyzing the logical relationship between the testing

outcomes, the number of faulty motherboards detected using

the testing strategy S can be calculated as follows:

nTP (S) =
n∑

i=1

⎡
⎣
⎛
⎝

m∨
j=1

(Di,j = 0)|(Sj = 1)

⎞
⎠ ≡ �

⎤
⎦ (14)

The number of false negative motherboards is calculated

as follows using Eqs. (13–14):

nFN (S) = nP − nTP (S) (15)

Then the FNR, which reflects the quality of testing, can be

calculated as follows:

FNR(S) =
nFN (S)

nP
(16)

The cost of repairing a false negative motherboard in

the system-level functional testing stage is determined by

nFN (S) and the cost of repairing each motherboard in the

finished product. The cost of rework depends on a variety

of factors and varies for each motherboard. For simplicity,

assuming that the repair cost is the same for each mother-

board and converted to repair time, the rework cost of the

process can then be simplified as a constant and denoted as

cr,FN . Similarly, the rework cost of a faulty motherboard

detected by the board-level functional testing stage is deter-

mined by nTP (S) and the rework cost per motherboard, as-

suming that the rework cost per motherboard for this stage is

cr,TP , which is usually significantly lower than cr,FN . The

exact values of both cr,FN and cr,TP are determined by prac-

tical experience.

The average testing time per motherboard is another im-

portant criterion for evaluating the effectiveness of the test-

ing strategy. This cost reflects the speed of testing, which

can be calculated as follows:

ct(S) =
1

n

n∑
i=1

m∑
j=1

Ti,j |(Sj = 1) (17)

Assume that the total cost of functional testing is the sum

of testing time cost and rework cost. Then the testing time

cost and rework cost can be integrated into a comprehensive

criterion based on the number of motherboards tested and re-

paired. This criterion is defined as the average cost of testing

per motherboard and can be expressed as follows:

c(S) =
nct(S) + cr,TPnTP (S) + cr,FNnFN (S)

n
(18)

The testing strategy with the lowest c(S) value is the one

that can effectively balance the quality and speed of testing.

4 Case Study

This section validates the effectiveness of the proposed

method using the functional testing process of a laptop moth-

erboard mentioned in Section 3.

4.1 Data Preparing
To protect the trade secrets of the electronics manufac-

turer, the following method is used to generate simulation

data that is similar to the actual data:

The number of board-level functional testing items is set

to 16, and the motherboard components tested are the same

as those listed in Ref [14]. According to the actual value

of the yield rate of each testing item, the yield rate of each

testing item is set as a random number uniformly distributed

on the interval [0.999, 1]. The number of motherboards nh

in the historical test log is set to 2e7 to capture enough re-

pair logs. Historical functional testing outcomes are ran-

domly generated based on the yield rates of testing items and

form a matrix Dh ∈ {0, 1}2e7×16. From Dh, the number

of faulty motherboards detected in the historical functional

testing nr is 135,048. The repair logs of the faulty mother-

boards form a matrix Dr ∈ {0, 1}135,048×24, where the ele-

ments of each column of the matrix are randomly generated

based on the probability of occurrence of the corresponding

basic event. Set the number of motherboards currently un-

der test, n, to 5e4. Generate the current functional testing

outcomes randomly according to the yield rate and form a

matrix D ∈ {0, 1}5e4×16.

According to the actual testing procedure, the mean test-

ing time for each item t̄j is set as a random number uni-

formly distributed between 0.1 and 11 seconds, with the

standard deviation of the testing time set as t̄j/100. Two

datasets containing the testing time of the motherboard are

generated based on the mean and standard deviation men-

tioned above. The first dataset corresponds to Dh and is

denoted as T h ∈ R
2e7×16; the second dataset corresponds

to D and is denoted as T ∈ R
5e4×16. Based on the current

progress of the board fabrication process, the testing time

threshold for each motherboard is set to 75 seconds. In ad-

dition, based on the actual repair cost, the repair costs cr,TP

and cr,FN are set at 0.5 hours and 5 hours, respectively.

The first 60% of the dataset D is used as a training set for

model training, while the remaining 40% is used as a test set

to validate the effectiveness of the testing strategy. Table 1

presents the yield rates of the testing items on the training

and test sets, denoted as ytrain and ytest, respectively. This

table also presents the percentage changes of the yield rates

in the test set with respect to the training set, and bold val-

ues highlight significant yield variations in the correspond-

ing testing items.

4.2 Ablation Study
To fully verify the effectiveness of the proposed method,

two sets of ablation experiments are designed as follows:

1) Modify the way of obtaining reliability in the objective

function (9): use the testing outcomes of the training

set to calculate the yield rate of each testing item, as

an approximation of the reliability of the correspond-

ing component. Solve the modified optimization prob-

lem and denote the resulting optimal testing strategy as

SapproxR.

2) Modify the objective function (9) to minimize the aver-

age cost of testing on the training set ctrain(S). Solve

the modified optimization problem and denote the re-

sulting optimal testing strategy as Smin c.

The first ablation experiment aims to verify the effective-

ness of the strategy obtained when the reliability is inaccu-

rately calculated using the reliability analysis model tailored

to the research object. The second ablation experiment aims

6908
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 08,2024 at 10:51:50 UTC from IEEE Xplore. Restrictions apply.

Table 1: Values and Percentage Changes of Yield Rates on

the Training and Test Sets

No. of testing item ytrain ytest Percentage change

1 0.99923 0.99860 -0.0634%
2 0.99957 0.99920 -0.0367%
3 0.99963 0.99925 -0.0383%
4 0.99993 1.00000 0.0067%

5 0.99943 0.99945 0.0017%

6 0.99980 0.99960 -0.0200%

7 0.99993 0.99990 -0.0033%

8 0.99957 0.99945 -0.0117%

9 1.00000 0.99930 -0.0700%
10 0.99943 0.99925 -0.0183%

11 0.99947 0.99890 -0.0567%
12 0.99953 0.99930 -0.0233%

13 0.99947 0.99925 -0.0217%

14 0.99980 1.00000 0.0200%

15 0.99943 0.99950 0.0067%

16 0.99943 0.99920 -0.0233%

to verify the effectiveness of the strategy obtained when the

reliability information of the testing object is not effectively

utilized. For simplicity, the methods corresponding to the

two comparative experiments are referred to as the “reli-

ability approximation method” and the “cost minimization

method”, respectively. In addition, the strategy obtained by

the proposed method is denoted as Sours.

This simulation case study was carried out on a Windows

10 PC equipped with an Intel Core 2.5GHz CPU and 32GB

of RAM using MATLAB R2023a. Monte Carlo simulation

was used to solve each optimization problem. The number

of simulation iterations for each round of optimization is set

to 5,000. The running time of the proposed method and the

methods in the ablation study are shown in Table 2.

Table 2: Running Time of Different Methods

Methods Running time/sec

Proposed method 0.0031
Reliability approximation method 0.0034

Cost minimization method 6.8910

The testing strategies obtained from each method are

shown in Table 3; the values of the evaluation criterion

of each method, together with the percentage changes or

changes of the methods in the ablation study with respect to

the proposed method on the training and test sets are shown

in Table 4 and Table 5, respectively.

4.3 Result Analysis
From Table 1, it can be seen that the working conditions

of the test set have changed compared to the training set,

resulting in relatively large variations in the yield rates of

several testing items.

From Table 4 and Table 5, it can be seen that the evalua-

tion criteria of strategy Sours are similar to those of Sapprox R

in the training set. However, in the test set, the values of

FNR and the average cost of testing for strategy Sours are

significantly better than those of strategy SapproxR. This sug-

gests that the improvement of computational accuracy of the

reliability helps to obtain a more reliable testing strategy,

which improves the generalization performance of the strat-

egy when working conditions change. It can also be seen

from Table 3 that the 9th item is not tested by SapproxR, but

is tested by Sours. According to the analysis presented in

Section 3.1, the utilization of the strategy SapproxR leads to a

decrease in the reliability of the board-level functional test-

ing stage, resulting in a tendency for performance deteriora-

tion on the test set.

It can also be seen from Table 4 and Table 5 that the aver-

age cost of testing for the strategy Smin c is the lowest among

the three strategies on the training set. This is because the

goal of the cost minimization method is to minimize the av-

erage cost of testing on the training set. However, on the test

set, the average cost of testing for this strategy is higher than

that of the other two strategies. It can be seen that the cost

minimization approach suffers from more significant over-

fitting when the working conditions change, as it does not

utilize the inherent reliability information in the historical

testing outcomes. It can also be seen from Table 3 that the

number of functional items tested by Smin c is fewer than

that of the other strategies. This leads to a significantly lower

average testing time than that of the other strategies. How-

ever, it also results in a significantly higher value of the FNR

criterion than the other strategies, resulting in a significantly

greater number of false negative motherboards and causing

higher rework costs and total cost of testing.

In addition, according to Table 2, the running time of the

proposed method is the lowest among the three methods. It is

close to that of the reliability approximation method. Since

these two methods do not require frequent computation of

cost function values, their running time is significantly lower

than that of the cost minimization method. In practical ap-

plications, a lower running time helps in making timely ad-

justments to the testing strategy, thereby further reducing the

testing cost.

Based on the above analysis, it can be seen that the pro-

posed method, which integrates statistical analysis and reli-

ability analysis, can select testing strategies with strong gen-

eralization ability, perform best on the test set, and acquire

testing strategies with the highest efficiency. This approach

has the potential to significantly reduce the cost of functional

testing in practical applications.

5 Conclusion

This article proposes an optimization modeling method

that integrates statistical analysis and reliability analysis. By

analyzing the system’s reliability, the expression for the re-

liability of its key stage was formulated. Statistical analysis

was utilized to exploit the inherent reliability information in

the massive process data. The probability of system failures’

root causes was determined based on this reliability infor-

mation. The reliability of the key stage was quantitatively

calculated based on the structure of the tailored fault tree

for the system. On this basis, the testing strategy was de-

termined by establishing a binary optimization model. The

proposed method has been verified to be capable of gener-

ating testing strategies with strong generalization ability and

effectively reducing the cost of functional testing by over

10% using simulation data similar to the actual data.

6909
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 08,2024 at 10:51:50 UTC from IEEE Xplore. Restrictions apply.

Table 3: Board-Level Functional Testing Strategies Obtained by Different Methods

Testing strategy
Number of functional testing items

Total number of testing items
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sours 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 13

SapproxR 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 12

Smin c 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 10

Table 4: Evaluation Criteria of Different Testing Strategies on the Training Set

Testing strategy
Average testing time/sec FNR Average cost of testing/sec

Value Percentage change Value Change Value Percentage change

Sours 74.9424 \ 8.47% \ 94.9224 \
SapproxR 72.7853 -2.88% 8.47% 0.00% 92.7653 -2.27%

Smin c 48.2619 -35.60% 28.04% 19.58% 88.2219 -7.06%

Table 5: Evaluation Criteria of Different Testing Strategies on the Test Set

Testing strategy
Average testing time/sec FNR Average cost of testing/sec

Value Percentage change Value Change Value Percentage change

Sours 74.9406 \ 9.14% \ 107.2506 \
SapproxR 72.7834 -2.88% 16.24% 7.11% 116.4334 8.56%

Smin c 48.2603 -35.60% 32.99% 23.86% 118.6403 10.62%

References

[1] M. Liu, R. Pan, F. Ye, X. Li, K. Chakrabarty, and X. Gu,

“Fine-grained adaptive testing based on quality prediction,”

ACM Transactions on Design Automation of Electronic Sys-
tems, vol. 25, no. 5, pp. 1–25, Jul. 2020.

[2] I. Polian, J. Anders, S. Becker, P. Bernardi, K. Chakrabarty,

N. ElHamawy, M. Sauer, A. Singh, M. S. Reorda, and

S. Wagner, “Exploring the mysteries of system-level test,” in

2020 IEEE 29th Asian Test Symposium (ATS). IEEE, Nov.

2020.

[3] S. Biswas, H. Wang, and R. D. S. Blanton, “Reducing test

cost of integrated, heterogeneous systems using pass-fail test

data analysis,” ACM Transactions on Design Automation of
Electronic Systems, vol. 19, no. 2, pp. 1–23, Mar. 2014.

[4] M. Chen and A. Orailoglu, “Test cost minimization through

adaptive test development,” in 2008 IEEE International Con-
ference on Computer Design. IEEE, Oct. 2008.

[5] W. Jiang and B. Vinnakota, “Defect-oriented test schedul-

ing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 9, no. 3, pp. 427–438, Jun. 2001.

[6] R. Pan, Z. Zhang, X. Li, K. Chakrabarty, and X. Gu, “Black-

box test-cost reduction based on Bayesian network models,”

IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 40, no. 2, pp. 386–399, 2020.

[7] K. Huang, J. Wen, and J. Willmore, “Test-suite-based ana-

log/RF test time reduction using canonical correlation,” IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 35, no. 12, pp. 2143–2147, 2016.

[8] M. Pradhan, B. B. Bhattacharya, K. Chakrabarty, and B. B.

Bhattacharya, “Predicting X-sensitivity of circuit-inputs on

test-coverage: A machine-learning approach,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 12, pp. 2343–2356, Dec. 2019.

[9] Y. Li, E. Yilmaz, P. Sarson, and S. Ozev, “Adaptive test

for RF/analog circuit using higher order correlations among

measurements,” ACM Transactions on Design Automation of
Electronic Systems, vol. 24, no. 4, pp. 1–16, Jun. 2019.

[10] E. Yilmaz, S. Ozev, O. Sinanoglu, and P. Maxwell, “Adaptive

testing: Conquering process variations,” in 2012 17th IEEE
European Test Symposium (ETS). IEEE, May 2012.

[11] S. Eryilmaz, “Reliability analysis of multi-state system with

three-state components and its application to wind energy,”

Reliability Engineering & System Safety, vol. 172, pp. 58–

63, Apr. 2018.

[12] H.-P. Chen and M. B. Mehrabani, “Reliability analysis and

optimum maintenance of coastal flood defences using prob-

abilistic deterioration modelling,” Reliability Engineering &
System Safety, vol. 185, pp. 163–174, May 2019.

[13] P. Ni, J. Li, H. Hao, W. Yan, X. Du, and H. Zhou, “Reliabil-

ity analysis and design optimization of nonlinear structures,”

Reliability Engineering & System Safety, vol. 198, p. 106860,

Jun. 2020.

[14] Y. Li, K. Wang, Y. Kang, Y. Zhao, and P. Bai, “Board-level

functional test selection based on fault tree analysis,” in 2023
6th International Symposium on Autonomous Systems (ISAS).
IEEE, Jun. 2023, pp. 1–6.

6910
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 08,2024 at 10:51:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

